DNV·GL

The Subsidy Free World: The age of flexible and dynamic renewables operation

Keir Harman, Director - Renewables Operations IWEA Autumn Conference 2018, Galway

SAFER, SMARTER, GREENER

Broad and deep knowledge gives us the bigger picture

www.dnvgl.com/eto

www.dnvgl.com/eto

Global Electricity Supply

DRAMATIC RISE IN SOLAR PV AND WIND

www.dnvgl.com/eto

Renewables in GB right now and forecast for next 7 days

www.dnvgl.com/forecaster

...and All Island for today

http://smartgriddashboard.eirgrid.com/#all/wind

Smarter operation is needed now!

~€75_{/MWh} ⇒ <<€50_{/MWh} ?

Maximize Energy Production

Minimize cost

Boost revenue

Many untapped opportunities to reduce cost of energy

Asset optimization route map

Management Life Assessment

An operating lifetime of 30 years or more? 40

Life Assessment: An integrated approach

Life Assessment: Principles

- 1. Estimate the loading
- 2. Estimate the strength
- 3. Estimate the uncertainties in loading and strength
- 4. Calculate the probability of failure or reliability index (inverse probability of failure)
- 5. Estimate "operating life" as the year in which site specific reliability = target reliability (per 20 year design life)

Life Assessment: Principles

Major structural components

- Safety critical
- non replaceable
- high consequence of failure

```
Foundation
```

Tower

Nacelle bedplate

Hub

System components may come into this category due to prohibitive replacement cost

Replaceable system components

- Non safety critical
- Replaceable
- lower consequence of failure
- Form majority of O&M cost

Pitch system Yaw system Braking system Blades Generator Power converter Gearbox Bearings Main shaft

Simpler failure modes - **load models** able to estimate fatigue life

Complex failure modes – data-based statistical models best suited

Life Assessment: The demand

• Lifetime assessment of over 20GW of operating wind farms for owners across the globe.

DNV GL standard on Life Extension of Wind Turbines (ST-0262): www.dnvgl.com/rules

Whole wind farm control

A move away from the 'selfish turbine' approach

"The whole is greater than the sum of its parts"

Aristotle

Whole wind farm control

increased loading!

Switch this turbine off?

Or reduce the power set-point of this one?

Or maybe yaw the turbine slightly to steer its wake away from the next turbine?

Whole wind farm control: the challenge

Whole wind farm control: example dynamic simulation

Whole wind farm control: Benefits

Whole wind farm control: Horizon 2020 and other projects

http://www.clwindcon.eu/

http://www.totalcontrolproject.eu/

- DTU
- DNV GL
- Siemens Gamesa
- Offshore Renewable Energy Catapult (ORE)
- SINTEF
- Equinor
- University of Leuven (KUL)
- Vattenfall
- DNV GL is working on other owner/operator and OEM led initiatives

Be prepared to operate in the subsidy free era!

 The energy transition demands renewable energy assets to operate in a very different way to before, more;

> Visible Predictable Controllable

- State of the art communications and forecasting with real-time performance management infrastructure is essential
- Plan to operate and manage the asset more dynamically; optimise lifetime and adopt whole wind farm control to minimise LCoE

Thank you

Keir.harman@dnvgl.com