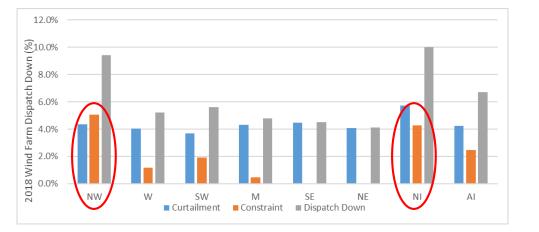
Challenges of Dispatch Down

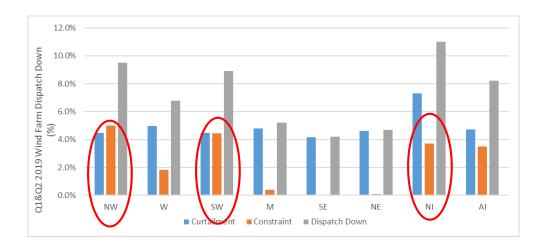
IWEA 2019 Autumn Conference 24th October 2019

Presentation Overview

• IWEA Dispatch Down Working Group

 Curtailment in 2030 Seal SUSTAINABLE ENERGY AUTHORITY OF IRELAND



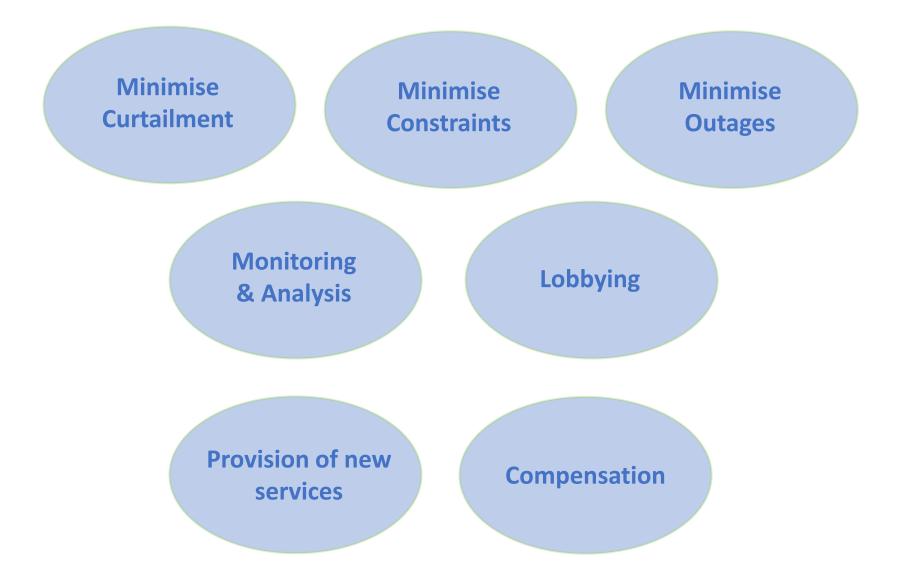


Dispatch Down in Numbers

	<u>2018</u>		<u>Q1/Q2 2019</u>
Dispatch Down Energy	700 GWh	Dispatch Down Energy	475 GWh
Increased emission	350 kt CO ²	Increased emission	230 kt CO ²
% of Total Energy/Emissions	2%	% of Total Energy/Emissions	2.75%
Lost Revenue	€50m	Lost Revenue	€37m
Curtailment %	4.2%	Curtailment %	4.7%
Constraint %	2.5%	Constraint %	3.5%

IWEA Dispatch Down Working Group

- Established by IWEA in 2019 to address members concerns on growing levels of constraint and curtailment
- Group manages c.3,800 MW (80%) of wind generation



• Now we need an action plan for the working group

Companies
Energia
Bord na Mona
Greencoat
Brookfield
Enerco
SSE
NTR
ABO Wind
ESB Wind Development
Statkraft
Energy Pro
RES Group

Working Group Goals

Working Group Action Plan

- Ongoing Tasks
- Supporting other working groups:
- Top new objectives

Working Group Action Plan

- Ongoing Tasks
 - Supporting delivery of EirGrid's DS3 programme
 - Analysis of dispatch down energy, CO² and revenue
 - Regularly meetings/workshops with EirGrid & SONI
 - Using all opportunities to raise dispatch down priorities
 - Managing and administering the working group
- Supporting other working groups:
- Top new objectives

Working Group Action Plan

• Ongoing Tasks

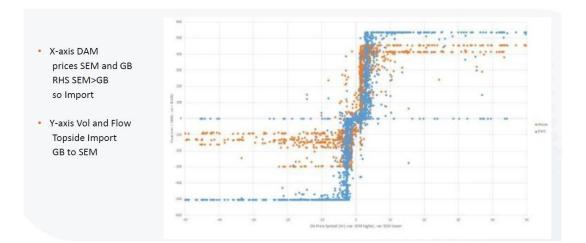
- Supporting other working groups:
 - Grid Development Working Group
 - P5 Working Group
 - Clean Energy Package Working Group
- Top new objectives

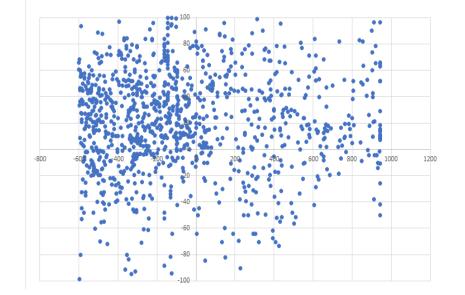
Working Group Action Plan - Top New Objectives

- Ongoing Tasks
- Supporting other working groups:
- Top new objectives:
 - Review effectiveness of interconnectors during curtailment events
 - Review potential to increase the export capacity on the Moyle interconnector
 - Review NCC resourcing and tools for managing dispatch down
 - Review min gen levels of existing conventional plant.
 - Input into regulators auditing of SOs dispatch down operation
 - Industry analysis to calculate outages periods in Ire/NI
 - Review EirGrid's quarterly dispatch down reports.
 - Complete analysis on allocation of dispatch down between windfarms

Minimise Curtailment - Example

		Oct-18	Nov-18	Dec-18	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Oct - Jun
ť	Curtailment Events(nr.)	6	15	19	9	23	16	7	6	6	107
e s	EWIC Avg Net (MW)	-273	-218	-180	-411	-290	-368	-108	-92	-406	- 261
tailr	EWIC Avg Net (%)	-52%	-41%	-34%	-1	-1	-1	0	0	-1	-49%
E E	Moyle Avg Net (MW)	-30	-54	18	-96	-89	-29	-72	-117	-133	-67
0	Moyle Avg Net (%)	-10%	-18%	6%	-19%	-18%	-6%	-14%	-23%	-27%	-25%
Desitive forwards the state the forwards and the forwards											

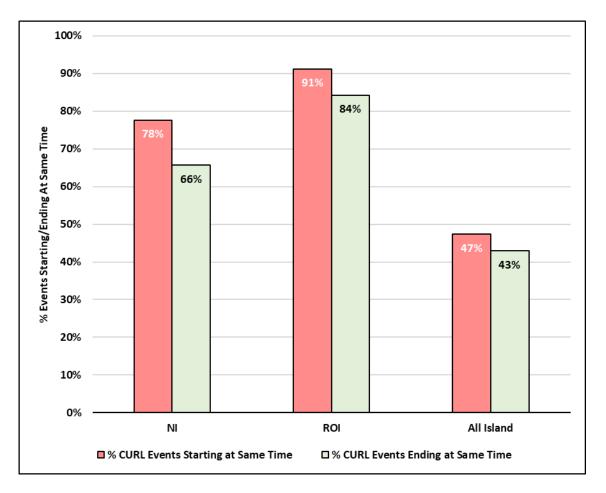

Positive figures represent imports, Negative figures represent exports


EWIC Capacity=530MW

Moyle Capacity=300MW(2018),500MW(2019)

Interconnector BM Schedule Position versus GB-ISEM BM Spread

Interconnector Flows


- Interconnector flow was in the opposite direction to the price signal in the balancing markets 45% of the time
- Recommend EirGrid carry out increased counter trading to minimise renewable curtailment

Working Group Action Plan - Top New Objectives

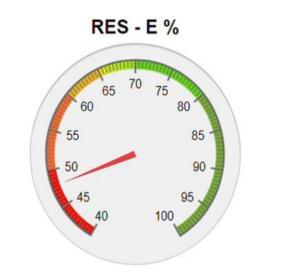
- Ongoing Tasks
- Supporting other working groups:
- Top new objectives:
 - Review effectiveness of interconnectors during curtailment events
 - Review potential to increase the export capacity on the Moyle interconnector
 - Review NCC resourcing and tools for managing dispatch down
 - Review min gen levels of existing conventional plant.
 - Input into regulators auditing of SOs dispatch down operation
 - Industry analysis to calculate outages periods in Ire/NI
 - Review EirGrid's quarterly dispatch down reports.
 - Complete analysis on allocation of dispatch down between windfarms

Allocation of Curtailment - Example

- Working group identified that dispatched down in NI was being incorrectly being tagged as curtailment rather than constraints
- Outcome will be greater constraint compensation for NI windfarms

Managing Curtailment in 2030

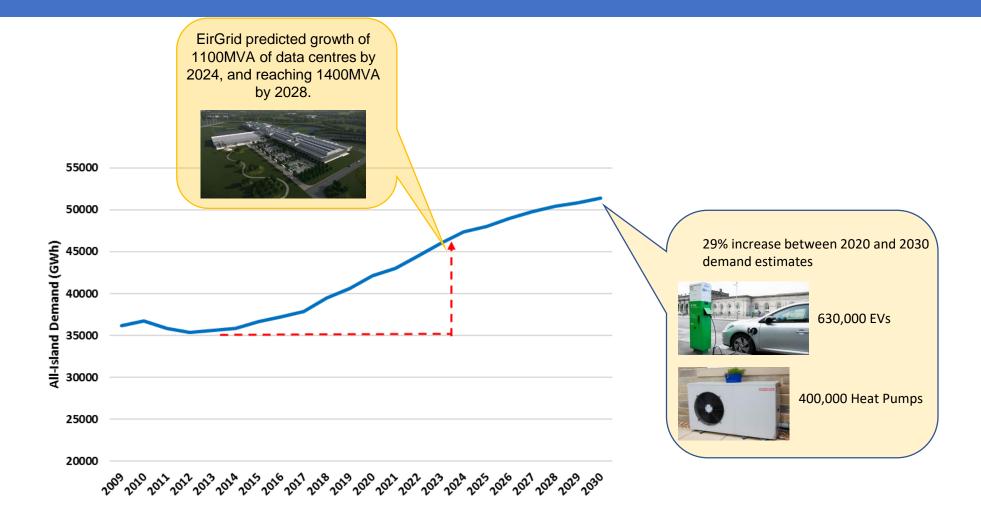
Paul Blount - James Carton - Conor Forde - Peter Lynn - Rory Mullan


Proposed Measures: 2030 High RES-E System

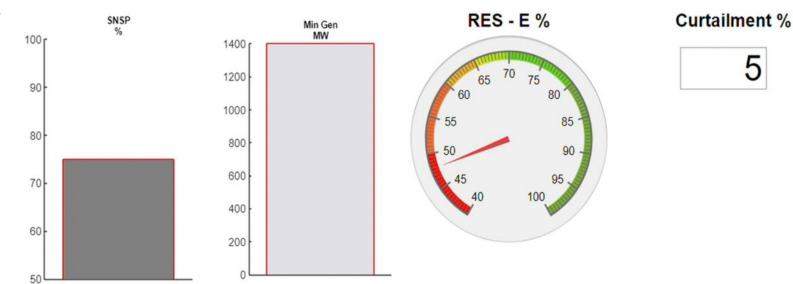
Measure	Description	2030	
Delieve enerational constraints	-Min Gen	700 MW	
Relieve operational constraints	-SNSP	90%	
Interconnection*	-Celtic IC -Greenlink IC -EWIC -MOYLE -Additional Capacity	700 MW 500 MW 500 MW 80 MW <u>240 MW</u> 2020 MW	
Energy storage	-Turlough Hill	219 MW	
Increased wind capacity factor	-Blended Onshore & Offshore Fleet Capacity Factor	38%	
Diversification of technologies	-Solar Capacity	7000 MW	
Demand side Management	-% EV Demand Flexible -% Background Demand Flexible -% Heat Pump Demand Flexible	60% 15% 100%	

* Interconnector Availability Assumed to be 90%

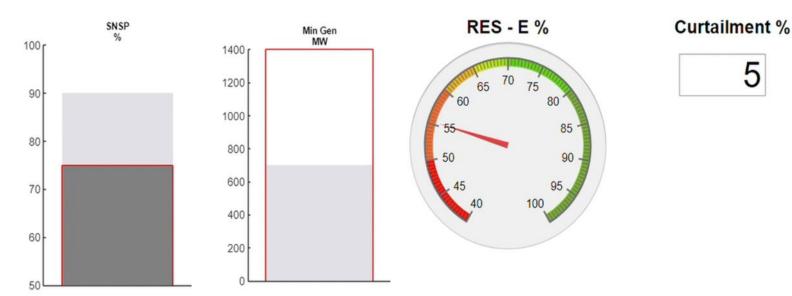
Curtailment Mitigation Measures


- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

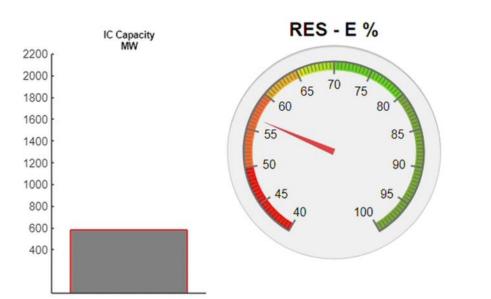
Curtailment %

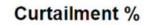

5

Increasing Demand

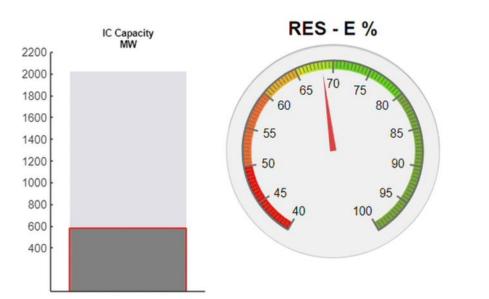


Source: Demand between 2018 and 2029 sourced from EirGrid's median demand forecasts from the 2019 Generation Capacity Statement * Electric vehicle and heat pump assumptions from IWEA 70 by 30 Study

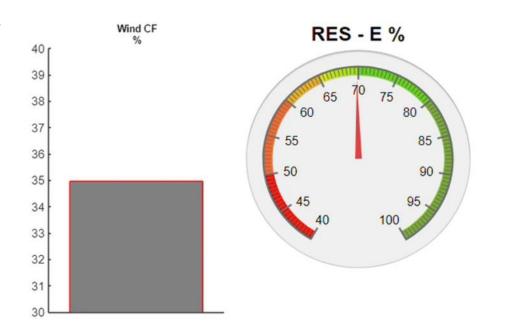

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility



- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

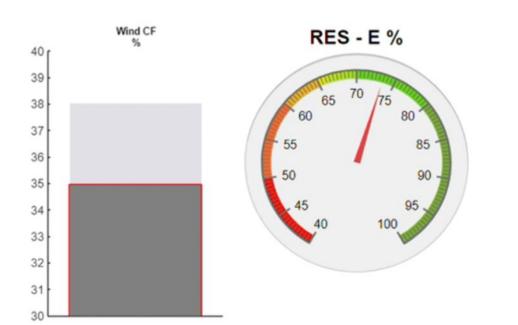

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

- 1. Relieve Operational Constraints
- 2. Provide Additional Interconnector Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility



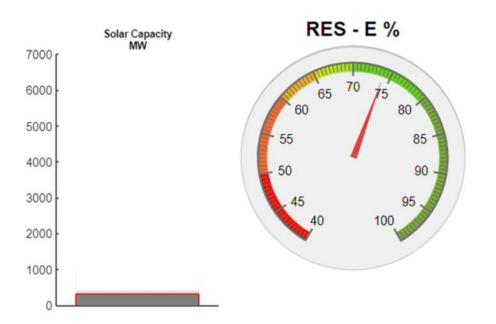
Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

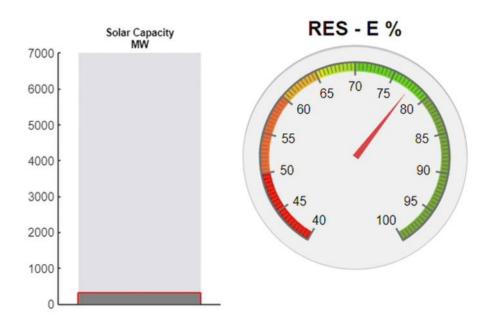


Curtailment %

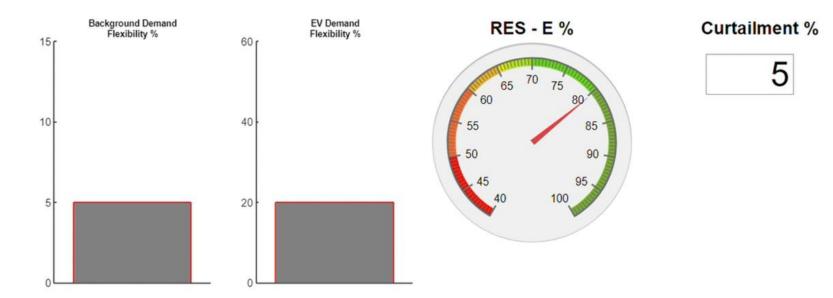
Curtailment Mitigation Measures

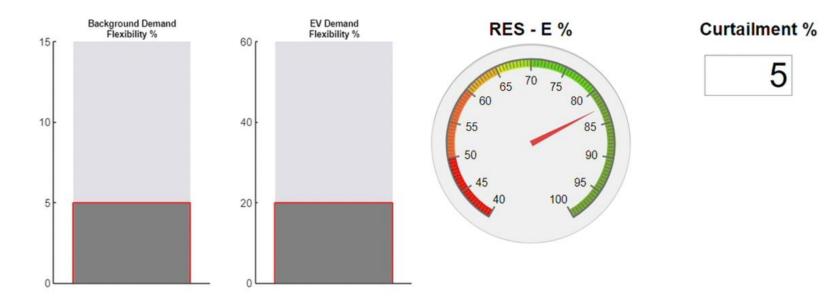

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

5

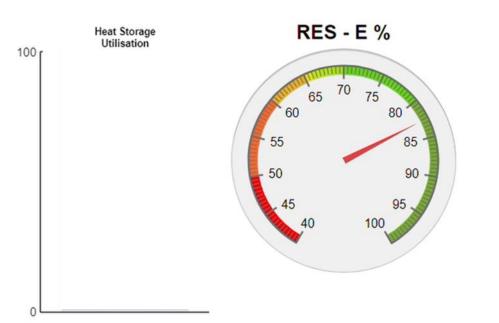

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment %


- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility



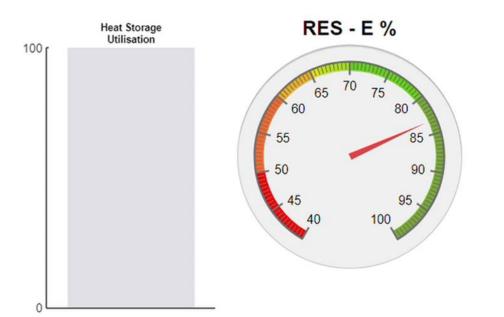
- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility



- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility



Curtailment %

Curtailment Mitigation Measures

- 1. Relieve Operational Constraints
- 2. Provide Additional IC Capacity
- 3. Increase the Capacity Factor of the wind fleet
- 4. Add Solar to the Generation Mix
- 5. Utilise Background Demand & EV Demand Side Flexibility
- 6. Utilise Heat Pump Demand Side Flexibility

Curtailment %

Summary

• IWEA working group now up and running with plans to minimise dispatch down

• Minimising curtailment in 2030 is challenging but achievable

