STORAGE IN IRELAND-AN OVERVIEW

IWEA Autumn Conference

October 11th 2018

Bernice Doyle

Chair IWEA Storage Committee

Statkraft today

OWN CAPACITY

19 100 MW

THIRD PARTY CAPACITY

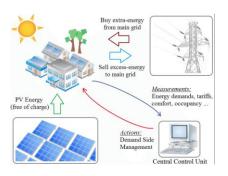
20 000 MW

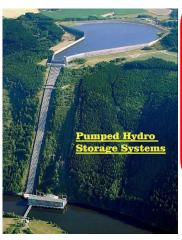
GROSS REVENUES 2017
EUR 7.3 bn

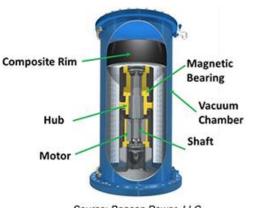
NET PROFIT 2017 **EUR 1.2 bn**

EMPLOYEES **3 500**

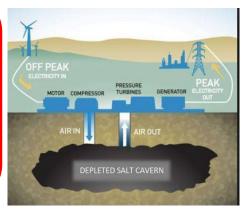
Energy Storage


"A temporal transporter of electricity through time"


Mark Alexander, Viridian


Large-scale storage technologies

- Pumped Storage
- Compressed Air Energy Storage (CAES)
- Flywheels
- Demand Side Units (DSUs)
- Batteries



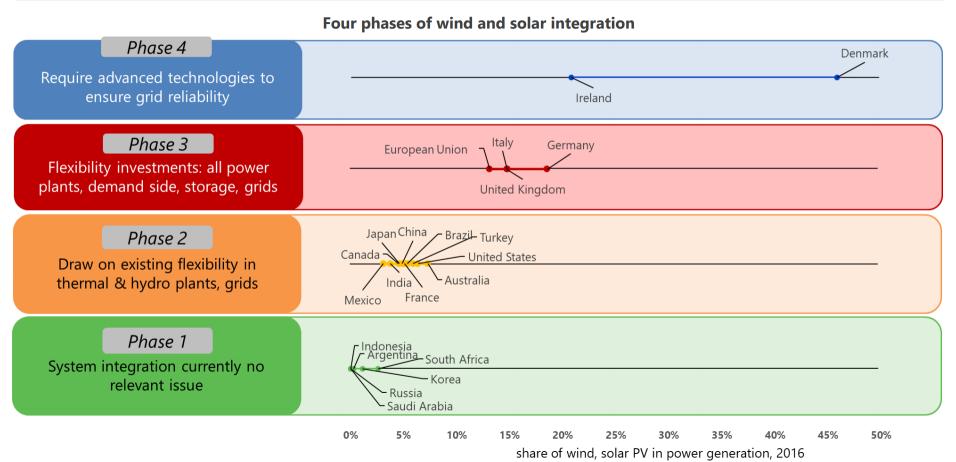
Source: Beacon Power, LLC

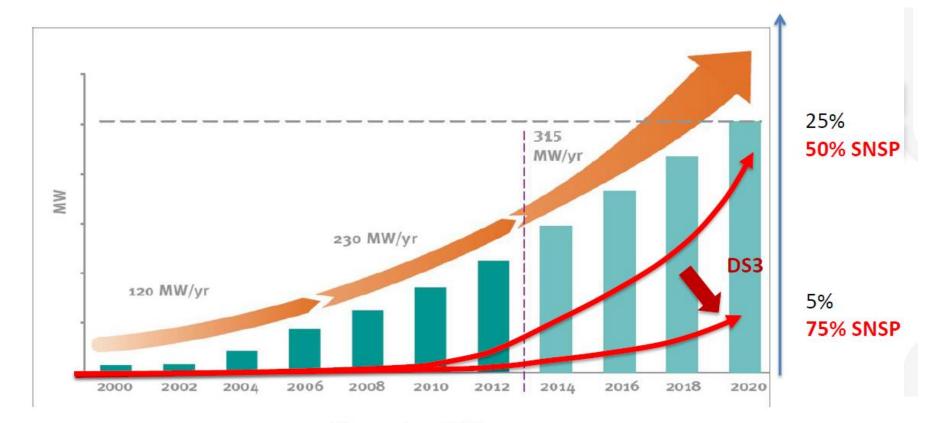
Storage in Ireland

- Pumped Storage- 1974- Turlough Hill 292MW for 4.5hrs
- Utility-scale battery- Kilroot- 10MW/ 5MWh 2016

Why Storage and why now in Ireland?

Which storage technologies?


Why batteries?



Europe leads the way in system integration of variable renewables

Illustrative SNSP curves

SNSP- System Non Synchronous Penetration

The proportion of power being provided by non-synchronous sources- wind/ solar/ IC

DS3 System Services

 EirGrid DS3 System Services the most ambitious increase in ancillary services of any TSO worldwide

EIRGRID

Figure 3: DS3 System Services Glide-Path

DS3 System Services- Reserves

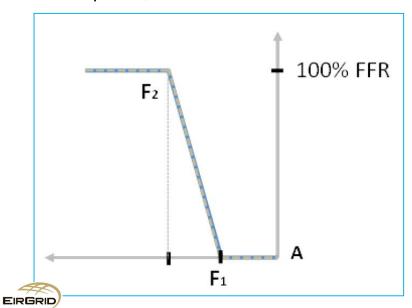
Volume- Capped services subset-Batteries/ DSU/ ICs can provide all 5

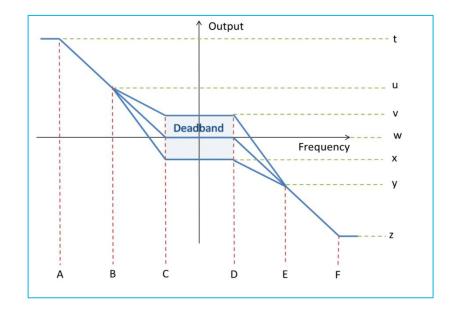
Service Name	Abbreviation	Unit of Payment	Short Description
Synchronous Inertial Response	SIR	MWs ² h	(Stored kinetic energy)*(SIR Factor – 15)
Fast Frequency Response	FFR	MWh	MW delivered between 2 and 10 seconds
Primary Operating Reserve	POR	MWh	MW delivered between 5 and 15 seconds
Secondary Operating Reserve	SOR	MWh	MW delivered between 15 to 90 seconds
Tertiary Operating Reserve 1	TOR1	MWh	MW delivered between 90 seconds to 5 minutes
Tertiary Operating Reserve 2	TOR2	MWh	MW delivered between 5 minutes to 20 minutes
Replacement Reserve – Synchronised	RRS	MWh	MW delivered between 20 minutes to 1 hour
Replacement Reserve – Desynchronised	RRD	MWh	MW delivered between 20 minutes to 1 hour
Ramping Margin 1	RM1	MWh	
Ramping Margin 3	RM3	MWh	The increased MW output that can be delivered with a good degree of certainty for the given time horizon.
Ramping Margin 8	RM8	MWh	
Fast Post Fault Active Power Recovery	FPFAPR	MWh	Active power (MW) >90% within 250 ms of voltage >90%
Steady State Reactive Power	SSRP	Mvarh	(Mvar capability)*(% of capacity that Mvar capability is achievable)
Dynamic Reactive Response	DRR	MWh	MVAr capability during large (>30%) voltage dips

EirGrid DS3 System Service Contracts for Regulated Arrangements Recommendations Paper- 12/12/2017

Wind

Reserve Products


Response Reserve Ramping *NEW* Fast Frequency Response (FFR) Fast Post-Fault Active Power Recovery (FPFAPR) 5 – 90s 90s - 20min 0 - 5s**Frequency Related Products** time Transient Voltage Response Voltage Regulation Network *NEW* Steady-state Reactive Power Dynamic Reactive • Dynamic Reactive Response (DRR) ms - s time **Voltage Related Products**


EIRGRID

Fast Frequency Response-Ireland vs. GB

- Ireland Fast Frequency Response (FFR)
- Non-symmetric, mainly low-frequency response, low-utilisation

- GB Enhanced Frequency Response (EFR)
- Symmetric, regulating, high utilisation

Procurement

1st Contracts May 2018

Volume Uncapped

Suits existing conventional,

Tariff-based payment- subject to various scalars

DSUs, ICs and Wind

Little capital investment

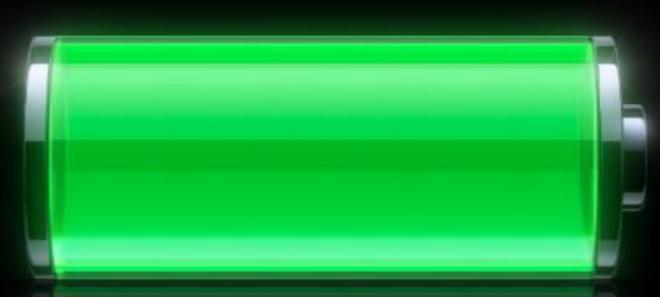
needed

Any unit can participate

- No limit on volume
- 6-monthly procurement gates
- All tariff-based contracts due to end April 2023
- 1-year unilateral termination for SO
- Ability to revise tariffs if risk of over-spend
- No build-time

Volume Capped

Pay-as-bid auction- limited operational scalars


- High Availability Requirements- 97%
- Volume-capped- 90-140MW in 2019
- Annual auctions?
- 6-year fixed contract
- No unilateral termination
- No revision of payments
- · 2-year build time

1st Auction Q1 2019

Suits batteries requiring large capital investmentwill DSUs/ ICs participate?

Why battery technology?

- Capable of very fast response
- Quick and easy to deploy
- Relatively established

- Low rate of self-discharge
- High Charging efficiency
- ▶ High Energy Density

Battery Projects in Ireland

- Planning- relatively straight-forward- >400MW with planning
- Grid- ECP-1 is processing 371MW DS3 grid- 5 times over-subscribed
- Grid Code requirements for storage units- PPM modification
- Noise- one to watch out for
- Fire Regulations- key risk to manage
- Network Charges- BESS charged as demand and generation
- Market Charges- PSO Levy inappropriate for BESS
- Rates- uncertainty re evaluation method

Future Volumes- 2030

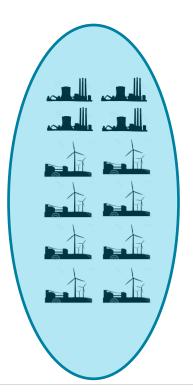
IWEA 70 by 30 Report

▶ 1200MW large-scale storage by 2030

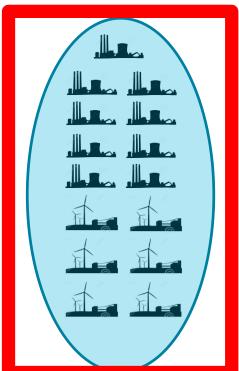
EirGrid Tomorrow's Energy Scenario Report

▶ 1200MW large-scale storage by 2030 in low carbon living scenario

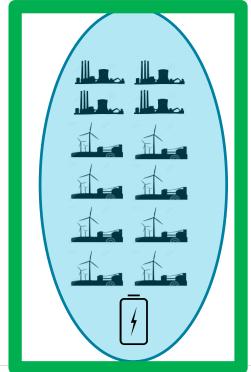
Future Volumes- 2020


2016- Volume Calculation Methodology and Portfolio Scenarios 2018- Consultation on DS3 **DECISION PAPER** 2018- Recommendation **System Services Volume** on DS3 System Services **Capped Competitive** DSU/ IC / Storage **Volume Capped Procurement** FFR provision **Competitive Procurement** 582-707MW 3 x 100MW 90-140MW in Auction 1 **Auctions** 100-130MW total by 2020

Why is EirGrid's short-term view on short-term reserve volumes changing?


Unconstrained Run

4 conventional units dispatched 1600MW conventional 3000MW wind 200MW Reserves


Constrained Run- no batteries

9 conventional units 1600MW + 500MW*= 2100MW conventional 2500MW wind 400MW Reserves 125 tonnes additional CO₂

Constrained Run- With 400MW Battery

4 conventional units 1600MW conventional 3000MW wind 400MW Batteries 400MW Reserves 0 additional CO₂

IWEA Storage Committee

- Representing the interests of the Storage industry in Ireland
- Wind and storage are complementary, especially at the very high penetration levels anticipated by 2030
- 20+ member organisations represented

Objectives

- Addressing key policy and regulatory issues facing storage projects
- Monitoring delivery of DS3 programme to 2020
- Work on 2030 scenarios and understand the implications for System Service requirements
- Development of System Services regime to maximise the opportunity for storage technology to meet the needs of a high SNSP system

Conclusion

- Industry has ramped up quickly in Ireland due to relatively low barriers to entry
- ECP-1 DS3 grid heavily over-subscribed
- Auctions will be highly competitive
- Industry needs to understand EirGrid volume forecast for services
- Batteries will be the most cost-competitive source of fast reserves in foreseeable future
- Batteries are a key technology to 70% RES in 2030

